Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Water Health ; 21(7): 884-894, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37515560

RESUMO

Legionella concentrations in drinking water have been regulated for decades and are evaluated with regard to their concentrations in drinking water plumbing systems (DWPS). The respective action levels differ at the international level. In Germany, the Federal Environment Agency (UBA) specifies the application of ISO 11731 for the detection of legionella in drinking water and gives a binding recommendation for the methods to be used for culturing and evaluation. Effective from 01 March 2019, the UBA recommendation was revised. The utilized culture media in the culture approach were altered, consequently affecting the spectrum of legionella colonies detected in drinking water. Using data from a routine legionella monitoring of a large laboratory, over a period of 6 years and 17,270 individual drinking water samples, allowed us to assess the impact of the alteration on the assessment of DWPS. By comparing the amount of action level exceedances before and after the method change, it could be demonstrated that exceedances are reported significantly more often under the new method. Consequently, the corresponding action level for evaluation of legionella contamination and the resulting risk to human health needs to be revised to avoid the misleading impression of increased health risk.


Assuntos
Água Potável , Legionella pneumophila , Legionella , Humanos , Água Potável/análise , Microbiologia da Água , Engenharia Sanitária , Alemanha , Abastecimento de Água
2.
Appl Environ Microbiol ; 89(5): e0001423, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37071016

RESUMO

Clostridioides difficile produces an environmentally resistant dormant spore morphotype that infected patients shed to the hospital environment. C. difficile spores persist in clinical reservoirs that are not targeted by hospital routine cleaning protocols. Transmissions and infections from these reservoirs present a hazard to patient safety. This study aimed to assess the impact of patients acutely suffering from C. difficile-associated diarrhea (CDAD) on C. difficile environmental contamination to identify potential reservoirs. Twenty-three hospital rooms accommodating CDAD inpatients with corresponding soiled workrooms of 14 different wards were studied in a German maximum-care hospital. Additionally, four rooms that never accommodated CDAD patients were examined as negative controls. Stagnant water and biofilms from sinks, toilets, and washer disinfector (WD) traps as well as swabs from cleaned bedpans and high-touch surfaces (HTSs) were sampled. For detection, a culture method was used with selective medium. A latex agglutination assay and a Tox A/B enzyme-linked immunosorbent assay were performed with suspect colonies. Stagnant water and biofilms in hospital traps (29%), WDs (34%), and HTSs (37%) were found to be reservoirs for large amounts of C. difficile during the stay of CDAD inpatients that decreased but could persist 13 ± 6 days after their discharge (13%, 14%, and 9.5%, respectively). Control rooms showed none or only slight contamination restricted to WDs. A short-term cleaning strategy was implemented that reduced C. difficile in stagnant water almost entirely. IMPORTANCE Wastewater pipes are microbial ecosystems. The potential risk of infection emanating from the wastewater for individuals is often neglected, since it is perceived to remain in the pipes. However, sewage systems start with siphons and are thus naturally connected to the outside world. Wastewater pathogens do not only flow unidirectionally to wastewater treatment plants but also retrogradely, e.g., through splashing water from siphons to the hospital environment. This study focused on the pathogen C. difficile, which can cause severe and sometimes fatal diarrheas. This study shows how patients suffering from such diarrheas contaminate the hospital environment with C. difficile and that contamination persists in siphon habitats after patient discharge. This might pose a health risk for hospitalized patients afterward. Since this pathogen's spore morphotype is very environmentally resistant and difficult to disinfect, we show a cleaning measure that can almost entirely eliminate C. difficile from siphons.


Assuntos
Clostridioides difficile , Infecção Hospitalar , Humanos , Clostridioides , Águas Residuárias , Ecossistema , Esporos Bacterianos , Hospitais , Diarreia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...